Answer:
[tex]r=5.1\times10^{10}m[/tex]
Explanation:
The Stefan–Boltzmann law for a black body (as stars are treated) can be written as [tex]j^*=\sigma T^4[/tex], where [tex]j^*[/tex] is the total energy radiated per unit surface area across all wavelengths per unit time, [tex]T[/tex] the absolute temperature and [tex]\sigma=5.67\times10^{-8} Wm^{-2}K^{-4}[/tex] is the Stefan–Boltzmann constant.
If we multiply [tex]j*[/tex] by the surface area [tex]A[/tex] of the star we get the total energy radiated across all wavelengths per unit time, which is the total power radiated, so we can write:
[tex]P=Aj^*=A\sigma T^4=4\pi r^2\sigma T^4[/tex]
where we have used the formula for the surface area of a sphere [tex]A=4\pi r^2[/tex]
Solving for r we have:
[tex]r=\sqrt{\frac{P}{4\pi \sigma T^4}}=\sqrt{\frac{2.7\times10^{31}W}{4\pi (5.67\times^{-8}Wm^{-2}K^{-4})(11000K)^4}}=5.1\times10^{10}m[/tex]