Respuesta :
Answer:
False statement is
At a given temperature, for a given gas, every molecule has the same speed
Explanation:
While checking each and every statement given
The mean free of a molecule actually depends on the size of the molecule because the mean free path is defined as the average distance between two successive collisions of the gas molecules
If the size of the molecule is more, the average distance between two successive collisions decrease and as a result the mean free path of the molecule decreases
Dalton's law of partial pressures is applicable for only ideal gases which means we are assuming that the size of the molecule of a gas is negligible and there are no intermolecular forces of attraction
These two assumptions gets applied at high temperature and low pressure
So Dalton's law of partial pressures tells us that total pressure of the gas is equal to the sum of the partial pressures of the individual gas components
∴ It explains the independent nature of the gas molecule
At a given temperature, for a given gas, all molecules of the gas do not have same speed but overall the average speed of the gas remains same because speed of each molecule of a gas depends on the collision with other molecules of the gas and as the collisions can't be the same therefore molecules of a gas have different speeds
Actually pressure is generated by the collisions of molecules with the container walls because when the gas molecules collide with the container they generate a force which in turn produce the pressure
At high pressure gas do not tend to behave ideally as there will be intermolecular forces and we will write the ratio of PV/nRT as Z which is the compressibility factor of a gas and it will be different for different gases as different gases has different intermolecular forces of attraction