A wave pulse travels down a slinky. The mass of the slinky is m = 0.87 kg and is initially stretched to a length L = 6.8 m. The wave pulse has an amplitude of A = 0.23 m and takes t = 0.478 s to travel down the stretched length of the slinky. The frequency of the wave pulse is f = 0.48 Hz.
1) What is the speed of the wave pulse? m/s2) What is the tension in the slinky?N3) What is the wavelength of the wave pulse?mPLEASE, CLEARLY WORK IT OUT CORRECTLY..THNKS

Respuesta :

Answer:

1. [tex]v=14.2259\ m.s^{-1}[/tex]

2. [tex]F_T=25.8924\ N[/tex]

3. [tex]\lambda=29.6373\ m[/tex]

Explanation:

Given:

  • mass of slinky, [tex]m=0.87\ kg[/tex]
  • length of slinky, [tex]L=6.8\ m[/tex]
  • amplitude of wave pulse, [tex]A=0.23\ m[/tex]
  • time taken by the wave pulse to travel down the length, [tex]t=0.478\ s[/tex]
  • frequency of wave pulse, [tex]f=0.48\ Hz=0.48\ s^{-1}[/tex]

1.

[tex]\rm Speed\ of\ wave\ pulse=Length\ of\ slinky\div time\ taken\ by\ the\ wave\ to\ travel[/tex]

[tex]v=\frac{6.8}{0.478}[/tex]

[tex]v=14.2259\ m.s^{-1}[/tex]

2.

Now, we find the linear mass density of the slinky.

[tex]\mu=\frac{m}{L}[/tex]

[tex]\mu=\frac{0.87}{6.8}\ kg.m^{-1}[/tex]

We have the relation involving the tension force as:

[tex]v=\sqrt{\frac{F_T}{\mu} }[/tex]

[tex]14.2259=\sqrt{\frac{F_T}{\frac{0.87}{6.8}} }[/tex]

[tex]202.3774=F_T\times \frac{6.8}{0.87}[/tex]

[tex]F_T=25.8924\ N[/tex]

3.

We have the relation for wavelength as:

[tex]\lambda=\frac{v}{f}[/tex]

[tex]\lambda=\frac{14.2259}{0.48}[/tex]

[tex]\lambda=29.6373\ m[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico