Answer:
1. [tex]v=14.2259\ m.s^{-1}[/tex]
2. [tex]F_T=25.8924\ N[/tex]
3. [tex]\lambda=29.6373\ m[/tex]
Explanation:
Given:
1.
[tex]\rm Speed\ of\ wave\ pulse=Length\ of\ slinky\div time\ taken\ by\ the\ wave\ to\ travel[/tex]
[tex]v=\frac{6.8}{0.478}[/tex]
[tex]v=14.2259\ m.s^{-1}[/tex]
2.
Now, we find the linear mass density of the slinky.
[tex]\mu=\frac{m}{L}[/tex]
[tex]\mu=\frac{0.87}{6.8}\ kg.m^{-1}[/tex]
We have the relation involving the tension force as:
[tex]v=\sqrt{\frac{F_T}{\mu} }[/tex]
[tex]14.2259=\sqrt{\frac{F_T}{\frac{0.87}{6.8}} }[/tex]
[tex]202.3774=F_T\times \frac{6.8}{0.87}[/tex]
[tex]F_T=25.8924\ N[/tex]
3.
We have the relation for wavelength as:
[tex]\lambda=\frac{v}{f}[/tex]
[tex]\lambda=\frac{14.2259}{0.48}[/tex]
[tex]\lambda=29.6373\ m[/tex]