Answer:
[tex]M_{Na^+}=1.36M[/tex]
[tex]M_{Br^-}=1.58M[/tex]
Explanation:
Hello,
At first, it turns out convenient to compute the total moles of sodium that will be dissolved into the solution by considering the added amounts of sodium bromide and sodium sulfate:
[tex]n_{Na^+}=n_{Na^+,NaBr}+n_{Na^+,Na_2SO_4}\\n_{Na^+,NaBr}=10.0gNaBr*\frac{1molNaBr}{103gNaBr}*\frac{1molNa^+}{1molNaBr}=0.0971molNa^+\\n_{Na^+,Na_2SO_4}=10.0gNa_2SO_4*\frac{1molNa_2SO_4}{142gNa_2SO_4}*\frac{2molNa^+}{1molNa_2SO_4} =0.141molNa^+\\n_{Na^+}=0.0971molNa^++0.141molNa^+\\n_{Na^+}=0.238molNa^+[/tex]
Once we've got the moles we compute the final volume via:
[tex]V=100.0mL+75.0mL=175.0mL*\frac{1L}{1000mL}=0.1750L[/tex]
Thus, the molarity of the sodium atoms turn out into:
[tex]M_{Na^+}=\frac{0.238mol}{0.1750L} =1.36M[/tex]
Now, we perform the same procedure but now for the bromide ions:
[tex]n_{Br^-}=n_{Br^-,NaBr}+n_{Br^-,AlBr_3}\\n_{Br^-,NaBr}=10.0gNaBr*\frac{1molNaBr}{103gNaBr}*\frac{1molBr^-}{1molNaBr}=0.0971molBr^-\\n_{Br^-,AlBr_3}=0.0750L*0.800\frac{molAlBr_3}{L} *\frac{3molBr^-}{1molAlBr_3}=0.180molBr^- \\n_{Br^-}=0.0971molBr^-+0.180molBr^-\\n_{Br^-}=0.277molBr^-[/tex]
Finally, its molarity results:
[tex]M_{Br^-}=\frac{0.277molBr^-}{0.1750L}=1.58M[/tex]
Best regards.