Answer:
[tex]v = 1.42 m/s[/tex]
Explanation:
While mass is falling downwards there is no frictional loss so here we can use mechanical energy conservation
So change in gravitational potential energy = gain in kinetic energy of the system
[tex]mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2[/tex]
for uniform cylinder we will have
[tex]I = \frac{1}{2}MR^2[/tex]
now we have
[tex]mgh = \frac{1}{2}I\omega^2 + \frac{1}{2}mv^2[/tex]
[tex]mgh = \frac{1}{2}(\frac{1}{2}MR^2)(\frac{v}{R})^2 + \frac{1}{2}mv^2[/tex]
[tex]mgh = \frac{1}{4}Mv^2 + \frac{1}{2}mv^2[/tex]
[tex]mgh = (\frac{M}{4} + \frac{m}{2})v^2[/tex]
now we have
[tex]v^2 = \frac{mgh}{(\frac{M}{4} + \frac{m}{2})}[/tex]
[tex]v^2 = \frac{40(9.81)(0.50)}{(\frac{310}{4} + \frac{40}{2})}[/tex]
[tex]v = 1.42 m/s[/tex]