Respuesta :
Answer:
[tex]u(x,t) = \frac{g(x)}{\sin{(kb)}}\sin{(ky)} Fsinh{(kx)}[/tex]
Step-by-step explanation:
The Laplace's equation in rectangular coordinates is:
[tex]\frac{\partial^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2} = 0[/tex]
For the solution, we assume that u can be write as
[tex]u(x,y) = X(x)Y(y)[/tex]
Replace
[tex]Y(y)\frac{d^2X}{dx^2} +X(x)\frac{d^2Y}{dy^2} =0[/tex]
Divide [tex]X(x) Y(y)[/tex]
[tex]\frac{1}{X(x)}\frac{d^2X}{dx^2}= -\frac{1}{Y(y)}\frac{d^2Y}{dy^2}[/tex]
The only way that this can be true, is that every term is the same constant, so we say that
[tex]\frac{1}{X(x)}\frac{d^2X}{dx^2} = -\frac{1}{Y(y)}\frac{d^2Y}{dy^2} = k^2[/tex]
With [tex]k^2[/tex] a constant.
Now, we solve every part. For [tex]X(x)[/tex]
[tex]\frac{d^2X}{dx^2} = k^2X(x)[/tex]
The solution is:
[tex]X(x) = Ee^{kx} + De^{-kx}[/tex]
For [tex]Y(y)[/tex]
[tex]\frac{d^2Y}{dy^2} = -k^2Y(y)[/tex]
Is the differential equation for a harmonic oscillator, so the solution is
[tex]Y(y) = A\cos{ky} + B\sin{ky}[/tex]
Now, we evaluate the boundary conditions:
[tex]u(x,0) = 0 \rightarrow Y(0) = 0[/tex]
[tex]Y(0) = A\cos{0} + B\sin{0} = 0; A = 0[/tex]
[tex]Y(y) = B\sin{ky}[/tex]
The other
[tex]u(x,b) = 0 \rightarrow Y(b) = 0[/tex]
[tex]Y(b) = B\sin({kb}) = g(x); B = \frac{g(x)}{sin({kb})}[/tex]
[tex]Y(y) = \frac{g(x)}{\sin({kb})} sin{(ky)}[/tex]
For [tex]X(x)[/tex]:
[tex]u(0,y) = 0 \rightarrow X(0) =0[/tex]
[tex]X(0) = Ee^{0} + De^{-0} =0; E+D=0[/tex]
[tex]E = -D[/tex]
So, [tex]X(x) = E(e^{kx} - e^{-kx} ) = 2Esinh(kx) = Fsinh(kx))[/tex]
The other condition:
[tex]u(a,y) = 0 \rightarrow X(a) = 0[/tex]
[tex]X(a) = F(sinh{(ka)}) = 0[/tex]
So,
[tex]u(x,t) = \frac{g(x)}{\sin{(kb)}}\sin{(ky)} Fsinh{(kx)}[/tex]