Answer:
[tex]5.65487\times 10^{-8}\ Wb[/tex]
[tex]1.17\times 10^{-5}\ H[/tex]
-0.020475 V
Explanation:
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi \times 10^{-7}\ H/m[/tex]
[tex]N_1[/tex] = Number of turns of coil = 25
[tex]N_2[/tex] = Number of turns of coil 2 = 300
[tex]\frac{di_2}{dt}[/tex] = Rate of current increased = [tex]1.75\times 10^3\ A/s[/tex]
d = Diameter = 2 cm
r = Radius = [tex]\frac{d}{2}=\frac{2}{2}=1\ cm[/tex]
A = Area = [tex]\pi r^2[/tex]
Magnetic field in the solenoid is given by
[tex]B=\mu_0\frac{N_2}{l}I\\\Rightarrow B=4\pi\times 10^{-7}\frac{300}{0.25}\times 0.12\\\Rightarrow B=0.00018\ T[/tex]
Magnetic flux is given by
[tex]\phi=BA\\\Rightarrow \phi=0.00018\times \pi\times 0.01^2\\\Rightarrow \phi=5.65487\times 10^{-8}\ Wb[/tex]
The average magnetic flux through each turn of the inner solenoid is [tex]5.65487\times 10^{-8}\ Wb[/tex]
Mutual inductance is given by
[tex]L=\frac{N_1\phi}{i_1}\\\Rightarrow L=\frac{25\times 5.65487\times 10^{-8}}{0.12}\\\Rightarrow L=1.17\times 10^{-5}\ H[/tex]
The mutual inductance of the two solenoids is [tex]1.17\times 10^{-5}\ H[/tex]
Induced emf is given by
[tex]V=-L\frac{di_2}{dt}\\\Rightarrow V=-1.17\times 10^{-5}\times 1.75\times 10^3\\\Rightarrow V=-0.020475\ V[/tex]
The emf induced in the outer solenoid by the changing current in the inner solenoid is -0.020475 V