Respuesta :
Answer:
[tex]x=\frac{L}{tan(\phi_1)cot(\phi_2)+1}[/tex]
Explanation:
Let 'F₁' and 'F₂' be the forces applied by left and right wires on the bar as shown in the diagram below.
Now, the horizontal and vertical components of these forces are:
[tex]F_{1x} = -F_1cos(\phi_1)\\F_{1y}=F_1sin(\phi_1)\\\\F_{2x}=F_2cos(\phi_2)\\F_{2y}=F_2sin(\phi_2)[/tex]
As the system is in equilibrium, the net force in x and y directions is 0 and net torque about any point is also 0. Therefore,
[tex]\sum F_x=0\\F_{1x}=F_{2x}\\F_1cos(\phi_1)=F_2cos(\phi_2)\\\frac{F_1}{F_2}=\frac{cos(\phi_2)}{cos(\phi_1)}-------1[/tex]
Now, let us find the net torque about a point 'P' that is just above the center of mass at the upper edge of the bar.
At point 'P', there are no torques exerted by the F₁x and F₂x nor the weight of the bar as they all lie along the axis of rotation.
Therefore, the net torque by the forces [tex]F_{1y}\ and\ F_{2y}[/tex] will be zero. This gives,
[tex]-F_{1y}\times x + F_{2y}(L-x) = 0
\\F_{1y}\times x=F_{2y}(L-x)\\x=\frac{F_{2y}(L-x)}{F_{1y}}[/tex]
But, [tex]F_{1y}=F_1sin(\phi_1)\ and\ F_{2y}=F_2sin(\phi_2)[/tex]
Therefore,
[tex]x=\frac{F_2sin(\phi_2)(L-x)}{F_1sin(\phi_1)}\\\textrm{From equation (1),}\frac{F_2}{F_1}=\frac{cos(\phi_1)}{cos(\phi_2)}\\\therefore x=\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}\times (L-x)\\x=\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}\times L-\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}\times x\\\\[/tex]
[tex]x(1+\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)})=\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}L\\x(1+\frac{cos(\phi_1)}{sin(\phi_1)}\times \frac{sin(\phi_2}{cos(\phi_2)})=\frac{cos(\phi_1)}{cos(\phi_2)}\times \frac{sin(\phi_2}{sin(\phi_1)}L[/tex]
We know,
[tex]tan(\phi)=\frac{sin(\phi)}{cos(\phi)}\\\\cot(\phi)=\frac{cos(\phi)}{sin(\phi)}[/tex]
∴[tex]x=\frac{L}{tan(\phi_1)cot(\phi_2)+1}[/tex]

The position of the center of mass of the bar measured as a distance x from the bar's left :
[tex]X = \frac{L *tan \alpha /2 }{tan\alpha _{1} + tan\alpha _{2} }[/tex]
Determine the position of the center of mass
First step : State the static equation conditions
Σfx = 0
T₁cos[tex]\alpha _{1}[/tex] = T₂cos[tex]\alpha _{2}[/tex] ------- ( 1 )
Σfy = 0
T₁sin[tex]\alpha _{1}[/tex] = T₂sin[tex]\alpha _{2}[/tex] ------- ( 2 )
Σw ( taking moment about w ) = 0
T₁sin[tex]\alpha _{1}[/tex] ( x ) = T₂sin[tex]\alpha _{2}[/tex] ( 1 - x ) ------- ( 3 )
T₁sin[tex]\alpha _{1}[/tex] = T₂sin[tex]\alpha _{2}[/tex] ( 1 - x ) / x
Next step : Determine the position of the center of mass
Back to equation ( 2 )
T₂sin[tex]\alpha _{2}[/tex] = wx / L
T₁sin[tex]\alpha _{1}[/tex] = w ( L-x ) / L
Back to equation ( 1 )
[ w ( L- x ) / L sin [tex]\alpha[/tex]₁ ] cos [tex]\alpha[/tex]₁ = [ wx / Lsin[tex]\alpha _{2}[/tex] ] cos[tex]\alpha _{2}[/tex]
( L - x ) tan[tex]\beta _{2}[/tex] = x tan [tex]\alpha _{1}[/tex] ----- ( 4 )
Solve for X
[tex]X = \frac{L *tan \alpha /2 }{tan\alpha _{1} + tan\alpha _{2} }[/tex]
Hence we can conclude The position of the center of mass of the bar measured as a distance x from the bar's left :
[tex]X = \frac{L *tan \alpha /2 }{tan\alpha _{1} + tan\alpha _{2} }[/tex]
Learn more about center of mass : https://brainly.com/question/874205
Attached below is the missing image related to your question
