Answer: Specific heat of the metal is [tex]0.670J/g^0C[/tex]
Explanation:
[tex]heat_{absorbed}=heat_{released}[/tex]
As we know that,
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex] .................(1)
where,
q = heat absorbed or released
[tex]m_1[/tex] = mass of metal = 40.0 g
[tex]m_2[/tex] = mass of water = 65.0 g
[tex]T_{final}[/tex] = final temperature = [tex]93.27^oC=(93.27+273)K=366.27K[/tex]
[tex]T_1[/tex] = temperature of metal = [tex]25^oC=(25+273)K=298K[/tex]
[tex]T_2[/tex] = temperature of water = [tex]100^oC=(100+273)K=373K[/tex]
[tex]c_1[/tex] = specific heat of metal = ?
[tex]c_2[/tex] = specific heat of water= [tex]4.184J/g^0C[/tex]
Now put all the given values in equation (1), we get
[tex]40.0\times c_1\times (366.27-298)=-[65.0\times 4.184\times (366.27-373)][/tex]
[tex]c_1=0.670[/tex]
Therefore, the specific heat of the metal is [tex]0.670J/g^0C[/tex]