Respuesta :
Answer:
f = 22.3 rpm
Explanation:
Here we know that there is no external torque on the system of disc + John
So here we can use angular momentum conservation
So we will have
[tex]I\omega_i + mvR = (I + mR^2)\omega_f[/tex]
so here we have
[tex]I = \frac{1}{2}MR^2[/tex]
[tex]I = \frac{1}{2}(250)(1.5^2)[/tex]
[tex]I = 281.25 kg m^2[/tex]
now we have
[tex]281.25(2\pi \frac{20}{60}) + (30 \times 5 \times 1.5) = (281.25 + 30(1.5^2))\omega_f[/tex]
[tex]589 + 225 = (281.25 + 67.5)\omega_f[/tex]
[tex]\omega_f = 2.33[/tex]
[tex]2\pi f = 2.33[/tex]
[tex]f = \frac{2.33}{2\pi}[/tex]
[tex]f = 22.3 rpm[/tex]
The angular velocity of the merry-go-round, in rpm, after John jumps on is obtained using the concept of angular momentum conservation and its value is 16.77 rpm.
Law of Conservation of Angular Momentum
According to the law of conservation of angular momentum, we have;
[tex]\frac{1}{2} MR^2\,\omega_1 +mvR=\frac{1}{2} MR^2\,\omega_2+mR^2\,\omega_2[/tex]
Given values are;
M = 250kg
m = 30kg
R = 1.5 m
[tex]\omega_1 = 30\,rpm[/tex]
v = 5 m/s
Substituting the given values, we get;
[tex]\frac{1}{2} (250\times 1.5^2\times20\,rpm) +(30\times 5\times 1.5\,)=[\frac{1}{2}(250kg \times 1.5^2)+(30\times 1.5^2)]\omega_2\\\\(5625+225)=(281.25+67.5)\omega_2\\\\\implies \omega_2=16.77\,rpm[/tex]
Learn more about conservation of angular momentum here:
https://brainly.com/question/13947497