Respuesta :

mid point formula: [tex] \text{coordinates of midpoint= }\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right) \\ \text{distance between two points= } \sqrt{(x_2-x_1)^2+(y_2-y_1)^2)} [/tex]

Answer:   The coordinate of the midpoint is m ( 8   ,   8)     and the distance HK is 4.5

Step-by-step explanation:

To find the coordinates of the point of the segment whose endpoints are H(9,10) and K(7,6), we simply use this formula;

m([tex]x_{m}[/tex] ,  [tex]y_{m}[/tex])   =   m( [tex]\frac{x_{1} + x_{2} }{2}[/tex]     ,     [tex]\frac{y_{1} + y_{2} }{2}[/tex]    )

                     

[tex]x_{1}[/tex]  =  9      [tex]y_{1}[/tex]  =  10          [tex]x_{2}[/tex]  =   7          [tex]y_{2}[/tex]   =   6

m([tex]x_{m}[/tex] ,  [tex]y_{m}[/tex])     =  m  ([tex]\frac{9 + 7}{2}[/tex]            ,       [tex]\frac{10 + 6}{2}[/tex]     )

   

                       = m ([tex]\frac{16}{2}[/tex]         ,            [tex]\frac{16}{2}[/tex]          )

                          =m (  8   ,     8)

The coordinate of the midpoint is m (  8   ,     8)

To find the distance HK,

let D = distance HK

D  =   √ [tex](x_{2} - x_{1} )^{2}[/tex]    +    [tex](y_{2} - y_{1}) ^{2}[/tex]

       =  √(7 - 9)²   +   (6 - 10)²

       =  √(-2)²   + (-4)²

      =  √4  +  16

       

       =√20

      = 4.5  

The distance HK is 4.5

RELAXING NOICE
Relax