Respuesta :
mid point formula: [tex] \text{coordinates of midpoint= }\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right) \\ \text{distance between two points= } \sqrt{(x_2-x_1)^2+(y_2-y_1)^2)} [/tex]
Answer: The coordinate of the midpoint is m ( 8 , 8) and the distance HK is 4.5
Step-by-step explanation:
To find the coordinates of the point of the segment whose endpoints are H(9,10) and K(7,6), we simply use this formula;
m([tex]x_{m}[/tex] , [tex]y_{m}[/tex]) = m( [tex]\frac{x_{1} + x_{2} }{2}[/tex] , [tex]\frac{y_{1} + y_{2} }{2}[/tex] )
[tex]x_{1}[/tex] = 9 [tex]y_{1}[/tex] = 10 [tex]x_{2}[/tex] = 7 [tex]y_{2}[/tex] = 6
m([tex]x_{m}[/tex] , [tex]y_{m}[/tex]) = m ([tex]\frac{9 + 7}{2}[/tex] , [tex]\frac{10 + 6}{2}[/tex] )
= m ([tex]\frac{16}{2}[/tex] , [tex]\frac{16}{2}[/tex] )
=m ( 8 , 8)
The coordinate of the midpoint is m ( 8 , 8)
To find the distance HK,
let D = distance HK
D = √ [tex](x_{2} - x_{1} )^{2}[/tex] + [tex](y_{2} - y_{1}) ^{2}[/tex]
= √(7 - 9)² + (6 - 10)²
= √(-2)² + (-4)²
= √4 + 16
=√20
= 4.5
The distance HK is 4.5
Otras preguntas
