Answer:
Approximately 0.0100 L. That's equivalent to 10.0 mL.
Explanation:
Look up the relative atomic mass data from a modern periodic table:
Calculate the molar mass of [tex]\rm H_2SO_4[/tex] (sulfuric acid):
[tex]M\left(\mathrm{H_2SO_4}\right) = 2 \times 1.008 + 32.06 + 4 \times 15.999 = \rm 98.072\; g \cdot mol^{-1}[/tex].
The standard unit of mass is gram. To make calculations easier, convert the mass of [tex]\rm H_2SO_4[/tex] to that unit:
[tex]m(\mathrm{H_2SO_4}) = \rm 50.0\;mg = 0.0500\; g[/tex].
Find the number of moles of [tex]\rm H_2SO_4[/tex] in this solution. Both the mass and the molar mass are in their respective standard unit. As a result, the value from this calculation will also be in the appropriate standard unit.
[tex]\displaystyle n(\mathrm{H_2SO_4}) = \dfrac{m}{M} = \dfrac{0.0500}{98.072} \approx \rm 5.0983 \times 10^{-4}\; mol[/tex].
Calculate the volume of this solution. Note that for concentration, [tex]\rm 1\;M[/tex] is the same as [tex]\rm 1\; mol \cdot L^{-1}[/tex] (moles per liter, not per milliliters)
[tex]\displaystyle V = \frac{n}{c} = \dfrac{5.0983 \times 10^{-4}}{0.0510} \approx \rm 1.00\times 10^{-2}\; L[/tex].
That's the same as [tex]\rm 1.00\times 10^{-2} \times 10^{3} \; mL = 10.0\; mL[/tex].