Answer:
[tex]v_f=8.17\frac{m}{s}[/tex]
Explanation:
First, we calculate the work done by this force after the box traveled 14 m, which is given by:
[tex]W=\int\limits^{x_f}_{x_0} {F(x)} \, dx \\W=\int\limits^{14}_{0} ({18N-0.530\frac{N}{m}x}) \, dx\\W=[(18N)x-(0.530\frac{N}{m})\frac{x^2}{2}]^{14}_{0}\\W=(18N)14m-(0.530\frac{N}{m})\frac{(14m)^2}{2}-(18N)0+(0.530\frac{N}{m})\frac{0^2}{2}\\W=252N\cdot m-52N\cdot m\\W=200N\cdot m[/tex]
Since we have a frictionless surface, according to the the work–energy principle, the work done by all forces acting on a particle equals the change in the kinetic energy of the particle, that is:
[tex]W=\Delta K\\W=K_f-K_i\\W=\frac{mv_f^2}{2}-\frac{mv_i^2}{2}[/tex]
The box is initially at rest, so [tex]v_i=0[/tex]. Solving for [tex]v_f[/tex]:
[tex]v_f=\sqrt{\frac{2W}{m}}\\v_f=\sqrt{\frac{2(200N\cdot m)}{6kg}}\\v_f=\sqrt{66.67\frac{m^2}{s^2}}\\v_f=8.17\frac{m}{s}[/tex]