A large fraction of the ultraviolet (UV) radiation coming from the sun is absorbed by the atmosphere. The main UV absorber in our atmosphere is ozone, O3. In particular, ozone absorbs radiation with frequencies around 9.38×1014 Hz . What is the wavelength λ of the radiation absorbed by ozone?

Respuesta :

Answer:

[tex]\lambda=3.20*10^{-7}m[/tex]

Explanation:

The wavelength is inversely proportional to the frequency. The wavelength is equal to the speed of the wave, divided by the frequency. In the case of electromagnetic waves like ultraviolet radiation, the speed of propagation is the speed of light.

[tex]\lambda=\frac{c}{f}\\\lambda=\frac{3*10^8\frac{m}{s}}{9.38*10^{14}Hz}\\\lambda=3.20*10^{-7}m[/tex]

Answer :  The wavelength of the radiation absorbed by ozone is, [tex]3.20\times 10^{-7}m[/tex]

Explanation : Given,

Frequency = [tex]9.38\times 10^{14}Hz=9.38\times 10^{14}s^{-1}[/tex]

Formula used :

[tex]\nu=\frac{c}{\lambda}[/tex]

where,

[tex]\nu[/tex] = frequency

[tex]\lambda[/tex] = wavelength

c = speed of light = [tex]3\times 10^8m/s[/tex]

Now put all the given values in the above formula, we get:

[tex]9.38\times 10^{14}s^{-1}=\frac{3\times 10^8m/s}{\lambda}[/tex]

[tex]\lambda=3.20\times 10^{-7}m[/tex]

Therefore, the wavelength of the radiation absorbed by ozone is, [tex]3.20\times 10^{-7}m[/tex]

ACCESS MORE