Answer:
Part a)
[tex]KE = 101.4 J[/tex]
Part b)
[tex]N = 0.043 revolution[/tex]
Part c)
F = 2.7 N
Explanation:
Part a)
As we know that the rotational kinetic energy of the merry go round is given as
[tex]KE = \frac{1}{2}I\omega^2[/tex]
[tex]KE = \frac{1}{2}84.4(\omega^2)[/tex]
here we know that
[tex]\omega = 2\pi(\frac{14.8}{60})[/tex]
[tex]\omega = 1.55 rad/s[/tex]
Now we have
[tex]KE = \frac{1}{2}(84.4)(1.55^2)[/tex]
[tex]KE = 101.4 J[/tex]
Part b)
Now we know that work done due to torque = change in kinetic energy
[tex]W = KE_f - KE_i[/tex]
[tex]\tau (2N\pi) = 101.4 - 0[/tex]
[tex]375(2\pi N) = 101.4[/tex]
[tex]N = 0.043 revolution[/tex]
Part c)
In order to stop it in four revolutions we have
[tex]\tau(2\pi N) = \Delta KE[/tex]
[tex]FR(2\pi N) = 101.4[/tex]
[tex]F(1.5)(2\pi \times 4) = 101.4[/tex]
F = 2.7 N