Respuesta :
Answer:
(a). The acceleration due to gravity at the surface of Titania is 0.37 m/s².
(b). The average density of Titania is 1656.47 kg/m³
Explanation:
Given that,
Radius of Titania [tex]R_{t}= \dfrac{1}{8}R_{e}[/tex]
Mass of Titania [tex]M_{t}= \dfrac{1}{1700}M_{e}[/tex]
We need to calculate the acceleration due to gravity at the surface of Titania
Using formula of the acceleration due to gravity on earth
[tex]g_{e}=\dfrac{GM_{e}}{R_{e}^2}[/tex]
The acceleration due to gravity on Titania
[tex]g_{t}=\dfrac{GM_{t}}{R_{t}^2}[/tex]
Put the value into the formula
[tex]g_{t}=\dfrac{G\times\dfrac{1}{1700}M_{e}}{(\dfrac{1}{8}R_{e})^2}[/tex]
[tex]g_{t}=\dfrac{64}{1700}\times G\dfrac{M_{e}}{R_{e}^2}[/tex]
[tex]g_{t}=0.004705 g_{e}[/tex]
[tex]g_{t}=0.03764\times9.8[/tex]
[tex]g_{t}=0.37\ m/s^2[/tex]
The acceleration due to gravity at the surface of Titania is 0.37 m/s².
(b). We assume Titania is a sphere
The average density of the earth is 5500 kg/m³.
We need to calculate the average density of Titania
Using formula of density
[tex]\rho=\dfrac{m}{V}[/tex]
[tex]\rho_{t}=\dfrac{M_{t}}{\dfrac{4}{3}\pi\times R_{t}^2}[/tex]
[tex]\rho_{t}=\dfrac{\dfrac{M_{e}}{1700}}{\dfrac{4}{3}\pi\times(\dfrac{R_{e}}{8})^2}[/tex]
[tex]\rho_{t}=\dfrac{512}{1700}\times\rho_{e}[/tex]
[tex]\rho_{t}=\dfrac{512}{1700}\times5500[/tex]
[tex]\rho_{t}=1656.47\ kg/m^{3}[/tex]
The average density of Titania is 1656.47 kg/m³
Hence, (a). The acceleration due to gravity at the surface of Titania is 0.37 m/s².
(b). The average density of Titania is 1656.47 kg/m³
The acceleration due to gravity at the surface of Titania is equal to 0.37 [tex]m/s^2.[/tex]
Given the following data:
Radius of Titania = [tex]\frac{1}{8} R_e[/tex]
Mass of Titania = [tex]\frac{1}{1700} M_e[/tex]
Scientific data:
Acceleration due to gravity ([tex]g_e[/tex]) = 9.8 [tex]m/s^2.[/tex]
Density of Earth = 5500 [tex]kg/m^3[/tex]
How to calculate the acceleration due to gravity.
Mathematically, the acceleration due to gravity on planet Earth is given by this formula:
[tex]g_e = \frac{GM_e}{R_e^2}[/tex] ....equation 1.
Similarly, the acceleration due to gravity on Titania is given by this formula:
[tex]g_t = \frac{GM_t}{R_t^2}[/tex] ....equation 2.
Substituting the given parameters into eqn. 2, we have;
[tex]g_t = \frac{G \times \frac{1}{1700} M_e}{(\frac{1}{8} R_e)^2}\\\\g_t = \frac{ \frac{GM_e}{1700} }{\frac{R_e^2}{64} }\\\\g_t =\frac{GM_e}{1700} \times \frac{64}{R_e^2} \\\\g_t =\frac{64}{1700} \times \frac{GM_e}{R_e^2}\\\\g_t =\frac{64}{1700} \times g_e\\\\g_t =0.0377 \times 9.8\\\\g_t=0.37 \;m/s^2[/tex]
How to calculate the density of Titania.
Note: A moon is spherical in shape.
[tex]\rho = \frac{Mass}{Volume} \\\\\rho_t = \frac{\frac{1}{1700} M_e}{\frac{4\pi}{3} \times (\frac{R_e}{8} )^2} \\\\\rho_t =\frac{512}{1700} \times \rho_e\\\\\rho_t =0.3012 \times 5500\\\\\rho_t =1656.6\;kg/m^3[/tex]
Read more on acceleration here: brainly.com/question/24728358