Respuesta :
Answer:
a) [tex]\bar X \sim N(40,\frac{24}{\sqrt{36}}=4)[/tex]
b)[tex]P(\bar X >45)=0.106[/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
Part a
The sampling distribution for the sample mean is given by:
[tex]\bar X \sim N(\mu,\frac{\sigma}{\sqrt{n}})[/tex]
The deduction is explained below we have this:
[tex]E(\bar X)= E(\sum_{i=1}^{n}\frac{x_i}{n})= \sum_{i=1}^n \frac{E(x_i)}{n}= \frac{n\mu}{n}=\mu[/tex]
[tex]Var(\bar X)=Var(\sum_{i=1}^{n}\frac{x_i}{n})= \frac{1}{n^2}\sum_{i=1}^n Var(x_i)[/tex]
Since the variance for each individual observation is [tex]Var(x_i)=\sigma^2 [/tex] then:
[tex]Var(\bar X)=\frac{n \sigma^2}{n^2}=\frac{\sigma}{n}[/tex]
And then for this special case:
[tex]\bar X \sim N(40,\frac{24}{\sqrt{36}}=4)[/tex]
Part b
We are interested on this probability:
[tex]P(\bar X >45)[/tex]
And we have already found the probability distribution for the sample mean on part a. So on this case we can use the z score formula given by:
[tex]\bar X \sim N(\mu,\frac{\sigma}{\sqrt{n}})[/tex]
Applying this we have the following result:
[tex]P(\bar X >45)=P(Z>\frac{45-40}{\frac{24}{\sqrt{36}}})=P(Z>1.25)[/tex]
And using the normal standard distribution, Excel or a calculator we find this:
[tex]P(Z>1.25)=1-P(z<1.25)=1-0.894=0.106[/tex]