Answer:
[tex]P=M(1-e^{-kt})[/tex]
Step-by-step explanation:
The relation between the variables is given by
[tex]\frac{dP}{dt} = k(M- P)[/tex]
This is a separable differential equation. Rearranging terms:
[tex]\frac{dP}{(M- P)} = kdt[/tex]
Multiplying by -1
[tex]\frac{dP}{(P- M)} = -kdt[/tex]
Integrating
[tex]ln(P-M)=-kt+D[/tex]
Where D is a constant. Applying expoentials
[tex]P-M=e^{-kt+D}=Ce^{-kt}[/tex]
Where [tex]C=e^{D}[/tex], another constant
Solving for P
[tex]P=M+Ce^{-kt}[/tex]
With the initial condition P=0 when t=0
[tex]0=M+Ce^{-k(0)}[/tex]
We get C=-M. The final expression for P is
[tex]P=M-Me^{-kt}[/tex]
[tex]P=M(1-e^{-kt})[/tex]
Keywords: performance , learning , skill , training , differential equation