Answer:
$10496.77
Step-by-step explanation:
We have been given that Barbara puts $200 into an account every month that pays 4.5% interest, compounded monthly.
To find the money in the account after 4 years, we will use future value formula.
[tex]FV=R(\frac{1+\frac{r}{n})^{nt}-1}{\frac{r}{n}})[/tex], where,
R = Regular deposits,
r = Interest rate in decimal form
n = Number of times interest in compounded per year,
t = Time in years.
[tex]4.5\%=\frac{4.5}{100}=0.045[/tex]
Substitute given values:
[tex]FV=\$200(\frac{1+\frac{0.045}{12})^{12*4}-1}{\frac{0.045}{12}})[/tex]
[tex]FV=\$200(\frac{1+0.00375)^{48}-1}{0.00375})[/tex]
[tex]FV=\$200(\frac{1.00375)^{48}-1}{0.00375})[/tex]
[tex]FV=\$200(1.1968143774194609-1}{0.00375})[/tex]
[tex]FV=\$200(0.1968143774194609}{0.00375})[/tex]
[tex]FV=\$200(52.4838339785229066667)[/tex]
[tex]FV=\$10496.76679570458133334[/tex]
[tex]FV\approx \$10496.77[/tex]
Therefore, there will be an amount of $10496.77 in the account after 4 years.