Suppose the Earth's magnetic field at the equator has magnitude 0.00005 T and a northerly direction at all points. How fast must a singly ionized uranium atom (m=238u, q=e) move so as to circle the Earth 1.44 km above the equator? Give your answer in meters/second.

Respuesta :

Answer:

Velocity will be [tex]v=1.291\times 10^8m/sec[/tex]

Explanation:

We have given magnetic field B = 0.00005 T

Mass m = 238 U

We know that [tex]1u=1.66\times 10^{-27}kg[/tex]

So 238 U [tex]=238\times 1.66\times 10^{-27}=395.08\times 10^{-27}kg[/tex]

Radius [tex]=R+1.44=6378+1.44=6379.44KM[/tex]

We know that magnetic force is given by

[tex]F=qvB[/tex] which is equal to the centripetal force

So [tex]qvB=\frac{mv^2}{r}[/tex]

[tex]1.6\times 10^{-19}\times v\times 0.00005=\frac{395.08\times 10^{-27}v^2}{6379.44}[/tex]

[tex]v=1.291\times 10^8m/sec[/tex]

RELAXING NOICE
Relax