Answer:
The mass of [tex]_{53}^{131}I[/tex] is [tex]8.09\times10^{-9}\ g[/tex].
Explanation:
Given that,
Half life [tex]t_{\frac{1}{2}}=8.08\ days[/tex]
Sample emitting radiation = 1.00 mCi = [tex]3.7\times10^{7}\ dps[/tex]
We need to calculate the rate constant
Using formula of rate constant
[tex]\lambda=\dfrac{0.693}{t_{\frac{1}{2}}}[/tex]
[tex]\lambda=\dfrac{0.693}{8.08\times24\times60\times60}[/tex]
[tex]\lambda=9.92\times10^{-7}\ s^{-1}[/tex]
We need to calculate the numbers of atoms
Using formula of numbers of atoms
[tex]N_{0}=\dfrac{N}{\lambda}[/tex]
[tex]N_{0} =\dfrac{3.7\times10^{7}}{9.92\times10^{-7}}[/tex]
[tex]N_{0}=3.72\times10^{13}\ atoms[/tex]
We need to calculate the mass of [tex]_{53}^{131}I[/tex]
Using formula for mass
[tex]m=\dfrac{131\times3.72\times10^{13}}{6.023\times10^{23}}[/tex]
[tex]m=8.09\times10^{-9}\ g[/tex]
Hence, The mass of [tex]_{53}^{131}I[/tex] is [tex]8.09\times10^{-9}\ g[/tex].