Answer:
[tex]k=\frac{26}{9}[/tex]
Step-by-step explanation:
[tex]f(x)=9x^2-\frac{4}{3}x-2, x\neq \frac{-2}{3}[/tex] and [tex]f(x)=k, x=\frac{-2}{3}[/tex]
Remember that a function is continuous in x=a if [tex]lim_{x\rightarrow a}f(x)=f(a)[/tex]
Since f is a rational function for every number different of [tex]x=-\frac{2}{3}[/tex], then f is continuous in these numbers.
Then we need that
[tex]lim_{x\rightarrow\frac{-2}{3}}f(x)=f(\frac{-2}{3})=k[/tex]
As we are approaching -2/3 then we are taking values greater and less than -2/3. Therefore for the limit we use [tex]f(x)=9x^2-\frac{4}{3}x-2[/tex].
But observe that [tex]9(\frac{-2}{3})^2-\frac{4}{3}\frac{-2}{3}-2=\frac{26}{9}[/tex].
Then k must be [tex]\frac{26}{9}[/tex].
let's verify that in effect f is continuous with [tex]\frac{26}{9}[/tex].
[tex]lim_{x\rightarrow \frac{-2}{3}}f(x)=lim_{x\rightarrow \frac{-2}{3}} (9x^2-\frac{4}{3}x-2)=9(\frac{-2}{3})^2-\frac{4}{3}*\frac{-2}{3}-2=\frac{26}{9}=k=f(\frac{-2}{3})[/tex]