In ΔUVW, m∠U = (2x-17)^{\circ}(2x−17)



, m∠V = (7x+16)^{\circ}(7x+16)



, and m∠W = (4x-1)^{\circ}(4x−1)



. Find m∠U.

Respuesta :

Answer:

m∠U=11°

Step-by-step explanation:

we know that

The sum of the interior angles in a triangle must be equal to 180 degrees

so

In this problem

m∠U+m∠V+m∠W=180°

substitute the given values

[tex](2x-17)\°+(7x+16)\°+(4x-1)\°=180\°[/tex]

solve for x

Combine like terns left side

[tex](13x-2)=180[/tex]

Adds 2 both sides

[tex]13x=182[/tex]

divide by 13 both sides

[tex]x=14[/tex]

Find the measure of angle U

m∠U = (2x-17)°

substitute the value of x

m∠U = (2(14)-17)=11°

RELAXING NOICE
Relax