A hollow, spherical shell with mass 2.00kg rolls without slipping down a slope angled at 38.0?.
a)Find the acceleration.
b)Find the friction force.
c)Find the minimum coefficient of friction needed to prevent slipping.

Respuesta :

Answer:

[tex]\mu = 0.31[/tex]

Explanation:

Given data:

mass = 2.00 kg

slope angle = 38.0

From figure

balancing force

[tex]mgsin\theta - f = ma[/tex]   .....1

Balancing torque

[tex]F_R = \frac{2}{3} mR^2 \alpha[/tex] ......2

for pure rolling

[tex]\alpha  = \frac{a}{R}[/tex]

[tex]F = \frac{2}{3} ma[/tex]

from 1 and 2nd equation

[tex]mgsin\theta - \frac{2}{3}ma =  ma[/tex]

[tex]mgsin\theta = \frac{5}{3} ma[/tex]

[tex]a = \frac{3}{5} g sin\theta[/tex]

 [tex] = \frac{3\theta 9.8 sin 38}{5} = 3.62 m/s^2[/tex]

[tex]F =\mu N[/tex]

   [tex]= \frac{2}{3} ma [/tex]

   [tex]= \frac{2}{3} 2\times 3.62 = 4.83 N[/tex]

N =normal force [tex]=  mgsin\theta = 2 \times 9.8 sin 38 = 15.44 N[/tex]

[tex]\mu \times 15.44 = 4.83[/tex]

solving for  coefficent of friction we get

[tex]\mu = 0.31[/tex]

Ver imagen rejkjavik
Lanuel

Based on the calculations, the acceleration of this hollow, spherical shell is equal to 3.62 [tex]m/s^2[/tex].

Given the following data:

  • Mass = 2.00 kg.
  • Angle of inclination = 38.0°.

How to calculate the acceleration.

The torque for a hollow, spherical shell is given by this formula:

[tex]F=\frac{2}{3} ma[/tex]

From Newton's Second Law of Motion, the forces acting on the shell is given by:

[tex]mgsin\theta -F=ma\\\\mgsin\theta -\frac{2}{3} ma=ma\\\\mgsin\theta=ma+\frac{2}{3} ma\\\\mgsin\theta=\frac{5}{3} ma\\\\gsin\theta=\frac{5}{3} a\\\\a=\frac{3gsin\theta}{5} \\\\a=\frac{3 \times 9.8 \times sin38.0}{5} \\\\a = \frac{18.10}{5}[/tex]

Acceleration, a = 3.62 [tex]m/s^2[/tex]

How to calculate the friction force.

Mathematically, the friction force acting on this shell is equal to the torque:

[tex]F=\frac{2}{3} ma\\\\F=\frac{2}{3} \times 2.00 \times 3.62[/tex]

F = 4.83 Newton.

How to calculate the minimum coefficient of friction.

First of all, we would determine the normal force:

[tex]N=mgcos\theta\\\\N= 2 \times 9.8 \times cos 38.0[/tex]

N = 15.45 Newton.

For the coefficient of friction:

[tex]\mu = \frac{F}{N} \\\\\mu = \frac{4.83}{15.45}\\\\\mu=0.31[/tex]

Read more on force here: brainly.com/question/1121817

RELAXING NOICE
Relax