Answer:
for 1 ) Normal (rectangular) coordinates
for 2) Polar coordinates
for 3) Cylindrical coordinates
for 4) Spherical coordinates
for 5) Normal (rectangular) coordinates
Step-by-step explanation:
1. ∫10∫y20 1x dx dy 2. → Normal (rectangular) coordinates x=x , y=y → integration limits ∫ [20,1] and ∫ [10,2]
2. ∫∫D 1x2+y2 dA. , D is: x2+y2≤4 → Polar coordinates x=rcosθ , y=rsinθ → integration limits ∫ [2,0] for dr and ∫ [2π,0] for dθ
3. ∫∫∫E z2 dV , E is: −2≤z≤2, 1≤x2+y2≤2 → Cylindrical coordinates x=rcosθ , y=rsinθ , z=z → integration limits ∫ [2,-2] for dz , ∫ [√2,1] for dr and ∫ [2π,0] for dθ
4. ∫∫∫E dV where E is: x2+y2+z2≤4, x≥0, y≥0, z≥0 → Spherical coordinates x=rcosθcosФ y=rsinθcosФ , z=rsinФ → integration limits ∫ [2,0] for dr ,∫ [-π/2,π/2] for dθ , ∫ [π/2,0] for dθ
5. ∫∫∫E z dV where E is: 1≤x≤2, 3≤y≤4, 5≤z≤6 → Normal (rectangular) coordinates x=x , y=y , z=z → integration limits ∫ [2,1] for dx ,∫ [4,3] for dy and ∫ [6,5] for dz