Answer:
K = 80.75 MeV
Explanation:
To calculate the kinetic energy of the antiproton we need to use conservation of energy:
[tex] E_{ph} = E_{p} + E_{ap} = E_{0p} + K_{p} + E_{0ap} + K_{ap} = m_{0p}c^{2} + K_{p} + m_{0ap}c^{2} + K_{ap} [/tex]
where [tex] E_{ph} [/tex]: is the photon energy, [tex] E_{0p} and E_{0ap} [/tex]: are the rest energies of the proton and the antiproton, respectively, equals to m₀c², [tex]K_{p} and K_{ap}[/tex]: are the kinetic energies of the proton and the antiproton, respectively, c: speed of light, and m₀: rest mass.
Therefore the kinetic energy of the antiproton is:
[tex] K_{ap} = E_{ph} - m_{0p}c^{2} - K_{p} - m_{0ap}c^{2} [/tex]
The proton mass is equal to the antiproton mass, so:
[tex] K_{ap} = E_{ph} - 2m_{0p}c^{2} - K_{p} [/tex]
[tex] K_{ap} = 2.20 \cdot 10^{3}MeV - 2(1.67 \cdot 10^{-27}kg)(3\cdot 10^{8} \frac {m}{s})^{2} - 242.85MeV [/tex]
[tex] K_{ap} = 2.20 \cdot 10^{3}MeV - 2(1.67 \cdot 10^{-27}kg)(3\cdot 10^{8} \frac {m}{s})^{2}(\frac{1eV}{1.602 \cdot 10^{-19}J})(\frac{1 MeV}{10^{6}eV}) - 242.85MeV [/tex]
[tex] K_{ap} = 80.75 MeV [/tex]
Hence, the kinetic energy of the antiproton is 80.75 MeV.
I hope it helps you!