Given:
→ [tex]r(t) = , t=4[/tex]
By differentiating the components, we get
[tex]r'(t) = <2t-3, 4, \frac{1}{3},3t^2+\frac{1}{2}.2t >[/tex]
[tex]r'(t) = <2t-3, 4, t^2+t>[/tex]
[tex]r'(4) = <2(4)-3, 4, (4)^2+4>[/tex]
[tex]r'(4) = <5, 4, 20>[/tex]
On finding the magnitude, we get
→ [tex]|r'(4)| = \sqrt{(5)^2+(4)^2+(20)^2}[/tex]
[tex]= \sqrt{25+16+400}[/tex]
[tex]= \sqrt{441}[/tex]
[tex]= 21[/tex]
Hence,
The unit tangent vector is:
→ [tex]T(4) = \frac{r'(4)}{ |r'(4)|}[/tex]
By substituting the values,
[tex]= \frac{<5,4, 20>}{21}[/tex]
[tex]= <\frac{5}{21} , \frac{4}{21} ,\frac{20}{21} >[/tex]
Thus the answer above is correct.
Learn more about tangent here:
https://brainly.com/question/24240735