Respuesta :

The unit tangent vector will be "[tex]T(4) = <\frac{5}{21} ,\frac{4}{21} ,\frac{20}{21} >[/tex]".

Given:

→ [tex]r(t) = , t=4[/tex]

By differentiating the components, we get

[tex]r'(t) = <2t-3, 4, \frac{1}{3},3t^2+\frac{1}{2}.2t >[/tex]

[tex]r'(t) = <2t-3, 4, t^2+t>[/tex]

[tex]r'(4) = <2(4)-3, 4, (4)^2+4>[/tex]

[tex]r'(4) = <5, 4, 20>[/tex]

On finding the magnitude, we get

→ [tex]|r'(4)| = \sqrt{(5)^2+(4)^2+(20)^2}[/tex]

            [tex]= \sqrt{25+16+400}[/tex]

            [tex]= \sqrt{441}[/tex]

            [tex]= 21[/tex]

Hence,

The unit tangent vector is:

→ [tex]T(4) = \frac{r'(4)}{ |r'(4)|}[/tex]

By substituting the values,

           [tex]= \frac{<5,4, 20>}{21}[/tex]

           [tex]= <\frac{5}{21} , \frac{4}{21} ,\frac{20}{21} >[/tex]

Thus the answer above is correct.  

Learn more about tangent here:

https://brainly.com/question/24240735

ACCESS MORE
EDU ACCESS
Universidad de Mexico