Respuesta :

Answer:

[tex]sin(t)=\frac{\sqrt{99}}{10}[/tex]

Step-by-step explanation:

Remember that

If angle t belong to the First Quadrant

then

The value of sin(t) and cos(t) are positive values

we know that

[tex]sin^2(t)+cos^2(t)=1[/tex] ---> by trigonometric identity

we have

[tex]cos(t)=0.1=\frac{1}{10}[/tex]

substitute

[tex]sin^2(t)+(\frac{1}{10})^2=1[/tex]

[tex]sin^2(t)+\frac{1}{100}=1[/tex]

[tex]sin^2(t)=1-\frac{1}{100}[/tex]

[tex]sin^2(t)=\frac{99}{100}[/tex]

[tex]sin(t)=\frac{\sqrt{99}}{10}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico