To develop this problem it is necessary to apply the related concepts at relative speed.
When an observer perceives the relative speed of a second observer, the function is described,
[tex]v' = \frac{v_1-v_2}{1-\frac{v_1v_2}{c^2}}[/tex]
Where,
[tex]v_1[/tex] = The velocity of the first escape pod
[tex]v_2[/tex] = The velocity of the second escape pod
c = Speed of light
v' = Speed of the first escape pod relative to the second escape pod.
Our values are given as,
[tex]v_1[/tex]= 0.7c
[tex]v_2[/tex]= -0.76c
Replacing we have,
[tex]v' = \frac{v_1-v_2}{1-\frac{v_1v_2}{c^2}}[/tex]
[tex]v' = \frac{0.7c-(-0.76c)}{1-\frac{(0.7c)(-0.76c)}{(3*10^8)^2}}[/tex]
[tex]v' = \frac{0.7c-(-0.76c)}{1-\frac{(0.7c)(-0.76c)}{(3*10^8)^2}}[/tex]
[tex]v' = 2.85*10^8m/s[/tex]
Therefore the speed of the first escape pod measure for the second escape pod is [tex]v' = 2.85*10^8m/s[/tex]