Respuesta :
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as
[tex]\omega_f = \omega_0 + \alpha t[/tex]
Where,
[tex]\omega_f =[/tex]Final Angular Velocity
[tex]\omega_0 =[/tex]Initial Angular velocity
[tex]\alpha =[/tex] Angular acceleration
t = time
The relation between the tangential acceleration is given as,
[tex]a = \alpha r[/tex]
where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that
[tex]\omega_f = (94rpm)(\frac{2\pi rad}{60s})= 9.8436rad/s[/tex]
[tex]\omega_0 = 63rpm(\frac{2\pi rad}{60s})= 6.5973rad/s[/tex]
[tex]t = 11s[/tex]
Replacing the previous equation with our values we have,
[tex]\omega_f = \omega_0 + \alpha t[/tex]
[tex]9.8436 = 6.5973 + \alpha (11)[/tex]
[tex]\alpha = \frac{9.8436- 6.5973}{11}[/tex]
[tex]\alpha = 0.295rad/s^2[/tex]
The tangential velocity then would be,
[tex]a = \alpha r[/tex]
[tex]a = (0.295)(0.2)[/tex]
[tex]a = 0.059m/s^2[/tex]
Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation
[tex]\omega_f^2=\omega_0^2+2\alpha\theta[/tex]
Replacing with our values and re-arrange to find [tex]\theta,[/tex]
[tex]\theta = \frac{\omega_f^2-\omega_0^2}{2\alpha}[/tex]
[tex]\theta = \frac{9.8436^2-6.5973^2}{2*0.295}[/tex]
[tex]\theta = 90.461rad[/tex]
That is equal in revolution to
[tex]\theta = 90.461rad(\frac{1rev}{2\pi rad}) = 14.397rev[/tex]
The linear displacement of the system is,
[tex]x = \theta*(2\pi*r)[/tex]
[tex]x = 14.397*(2\pi*\frac{0.25}{2})[/tex]
[tex]x = 11.3m[/tex]