If a radioactive isotope has a half-life of 26.5 days, how many days does it take for a sample of the isotope to decrease by 35.0% of its original value? View Available Hint(s) If a radioactive isotope has a half-life of 26.5 days, how many days does it take for a sample of the isotope to decrease by 35.0% of its original value? 40.1 days 16.5 days 7.15 days 0.0163 days

Respuesta :

Answer:

16.5 days

Explanation:

Given that:

Half life = 26.5 days

[tex]t_{1/2}=\frac {ln\ 2}{k}[/tex]

Where, k is rate constant

So,  

[tex]k=\frac {ln\ 2}{t_{1/2}}[/tex]

[tex]k=\frac {ln\ 2}{26.5}\ days^{-1}[/tex]

The rate constant, k = 0.02616 days⁻¹

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

Given:

35.0 % is decomposed which means that 0.35 of [tex][A_0][/tex] is decomposed. So,

[tex]\frac {[A_t]}{[A_0]}[/tex] = 1 - 0.35 = 0.65

t = 7.8 min

[tex]\frac {[A_t]}{[A_0]}=e^{-k\times t}[/tex]

[tex]0.65=e^{-0.02616\times t}[/tex]

t = 16.5 days.

ACCESS MORE