Answer:
[tex]\int\limits^2_0 {} \, \int\limits^2_0 \sqrt{576v^{4}+2304u^{2}v^{2}+4u^{4}}[/tex]du dv
Step-by-step explanation:
let, r = x i + y j + z k , where i, j, k are unit vectors.
r = [tex]u^{2}[/tex] i + uv j + 12 [tex]v^{2}[/tex] k
we know that the surface area of a surface represented by r(u,v) is
= [tex]\int\limits^2_0 {} \, \int\limits^2_0 {\frac{dr}{du} (cross)\frac{dr}{dv} } \, dudv[/tex]
here,
[tex]\frac{dr}{du}[/tex] = 2u i + v j
[tex]\frac{dr}{dv}[/tex] = u j + 24 v k
Cross product = [tex]\left[\begin{array}{ccc}i&j&k\\2u&v&0\\0&u&24v\end{array}\right][/tex]
= 24 [tex]v^{2}[/tex] i - 48 uv j + 2 [tex]u^{2}[/tex] k
The modulus of the cross product is [tex]\sqrt{576v^{4}+2304u^{2}v^{2}+4u^{4} }[/tex]
so, the surface area is
[tex]\int\limits^2_0 {} \, \int\limits^2_0 \sqrt{576v^{4}+2304u^{2}v^{2}+4u^{4}}[/tex]du dv
and the answer has to be left as the integral itself as the integral of square root of biquadratic can not be calculated(with random co efficients).