To solve this problem it is necessary to take into account the Efficiency values in the energy cycles.
Efficiency can be defined as,
[tex]\eta = 1 - \frac{Q_c}{Q_h} = 1- \frac{T_c}{T_h}[/tex]
Where,
Q = Heat Exchange
T = Temperature
The efficiency for this system is 0.43 then,
[tex]0.43 = 1-\frac{Q_c}{50}[/tex]
Re-arrange to find [tex]Q_c[/tex]
[tex]Q_c = 50*(1-0.43)[/tex]
[tex]Q_c = 28.5kJ[/tex]
And the temperature would be given as,
[tex]\eta = 1- \frac{T_c}{T_h}[/tex]
[tex]0.43 = 1 - \frac{T_c}{573.15K}[/tex]
[tex]T_c = 513.15K(1-0.43)[/tex]
[tex]T_c = 307.89K[/tex]
The entropy would be given as
[tex]\Delta S = S_f - S_i[/tex]
[tex]\Delta S = \frac{Q_c}{T_c}-\frac{Q_h}{T_h}[/tex]
[tex]\Delta S = \frac{28.5}{ 307.89}-\frac{50}{573.15}[/tex]
[tex]\Delta S = 5.32*10^{-3} kJ/K[/tex]