Respuesta :
Answer:
"Apparent weight during the "plan's turn" is 519.4 N
Explanation:
The "plane’s altitude" is not so important, but the fact that it is constant tells us that the plane moves in a "horizontal plane" and its "normal acceleration" is [tex]\mathrm{a}_{\mathrm{n}}=\frac{v^{2}}{R}[/tex]
Given that,
v = 420 m/s
R = 11000 m
Substitute the values in the above equation,
[tex]a_{n}=\frac{420^{2}}{11000}[/tex]
[tex]a_{n}=\frac{176400}{11000}[/tex]
[tex]a_{n}=16.03 \mathrm{m} / \mathrm{s}^{2}[/tex]
It has a horizontal direction. Furthermore, constant speed implies zero tangential acceleration, hence vector a = vector a N. The "apparent weight" of the pilot adds his "true weight" "m" "vector" "g" and the "inertial force""-m" vector a due to plane’s acceleration, vector[tex]W_{\mathrm{app}}=m(\text { vector } g \text { -vector a })[/tex]
In magnitude,
[tex]| \text { vector } g-\text { vector } a |=\sqrt{\left(g^{2}+a^{2}\right)}[/tex]
[tex]| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=\sqrt{\left(9.8^{2}+16.03^{2}\right)}[/tex]
[tex]| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=\sqrt{(96.04+256.96)}[/tex]
[tex]| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=\sqrt{353}[/tex]
[tex]| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=18.78 \mathrm{m} / \mathrm{s}^{2}[/tex]
Because vector “a” is horizontal while vector g is vertical. Consequently, the pilot’s apparent weight is vector
[tex]\mathrm{W}_{\mathrm{app}}=(18.78 \mathrm{m} / \mathrm{s}^ 2)(53 \mathrm{kg})=995.77 \mathrm{N}[/tex]
Which is quite heavier than his/her true weigh of 519.4 N
Answer:
518.86 N
Explanation:
mass of pilot, m = 53 kg
g = 9.8 m/s^2
h = 3300 m
Radius of earth, R = 6378.1 km
Let the value of acceleration due to gravity at a height is g'.
[tex]g'=g\left ( 1-\frac{2h}{R} \right )[/tex]
[tex]g'=g\left ( 1-\frac{2\times 3300}{6378.1 \times 1000} \right )[/tex]
g' = 9.7898 m/s^2
Weight of pilot
W' = m x g' = 53 x 9.7898 = 518.86 N