The joint probability density function of X and Y is given by fX,Y (x, y) = ( 6 7 x 2 + xy 2 if 0 < x < 1, 0 < y < 2 0 otherwise. (a) Verify that this is indeed a joint density function. (b) Compute the density function of X. (c) Find P(X > Y ). (d) Find P(Y > 1/2 | X < 1/2). (e) Find E(X). (f) Find E(Y

Respuesta :

I'm going to assume the joint density function is

[tex]f_{X,Y}(x,y)=\begin{cases}\frac67(x^2+\frac{xy}2\right)&\text{for }0<x<1,0<y<2\\0&\text{otherwise}\end{cases}[/tex]

a. In order for [tex]f_{X,Y}[/tex] to be a proper probability density function, the integral over its support must be 1.

[tex]\displaystyle\int_0^2\int_0^1\frac67\left(x^2+\frac{xy}2\right)\,\mathrm dx\,\mathrm dy=\frac67\int_0^2\left(\frac13+\frac y4\right)\,\mathrm dy=1[/tex]



b. You get the marginal density [tex]f_X[/tex] by integrating the joint density over all possible values of [tex]Y[/tex]:

[tex]f_X(x)=\displaystyle\int_0^2f_{X,Y}(x,y)\,\mathrm dy=\boxed{\begin{cases}\frac67(2x^2+x)&\text{for }0<x<1\\0&\text{otherwise}\end{cases}}[/tex]

c. We have

[tex]P(X>Y)=\displaystyle\int_0^1\int_0^xf_{X,Y}(x,y)\,\mathrm dy\,\mathrm dx=\int_0^1\frac{15}{14}x^3\,\mathrm dx=\boxed{\frac{15}{56}}[/tex]

d. We have

[tex]\displaystyle P\left(X<\frac12\right)=\int_0^2\int_0^{1/2}f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=\frac5{28}[/tex]

and by definition of conditional probability,

[tex]P\left(Y>\dfrac12\mid X<\dfrac12\right)=\dfrac{P\left(Y>\frac12\text{ and }X<\frac12\right)}{P\left(X<\frac12\right)}[/tex]

[tex]\displaystyle=\dfrac{28}5\int_{1/2}^2\int_0^{1/2}f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=\boxed{\frac{69}{80}}[/tex]

e. We can find the expectation of [tex]X[/tex] using the marginal distribution found earlier.

[tex]E[X]=\displaystyle\int_0^1xf_X(x)\,\mathrm dx=\frac67\int_0^1(2x^2+x)\,\mathrm dx=\boxed{\frac57}[/tex]

f. This part is cut off, but if you're supposed to find the expectation of [tex]Y[/tex], there are several ways to do so.

  • Compute the marginal density of [tex]Y[/tex], then directly compute the expected value.

[tex]f_Y(y)=\displaystyle\int_0^1f_{X,Y}(x,y)\,\mathrm dx=\begin{cases}\frac1{14}(4+3y)&\text{for }0<y<2\\0&\text{otherwise}\end{cases}[/tex]

[tex]\implies E[Y]=\displaystyle\int_0^2yf_Y(y)\,\mathrm dy=\frac87[/tex]

  • Compute the conditional density of [tex]Y[/tex] given [tex]X=x[/tex], then use the law of total expectation.

[tex]f_{Y\mid X}(y\mid x)=\dfrac{f_{X,Y}(x,y)}{f_X(x)}=\begin{cases}\frac{2x+y}{4x+2}&\text{for }0<x<1,0<y,2\\0&\text{otherwise}\end{cases}[/tex]

The law of total expectation says

[tex]E[Y]=E[E[Y\mid X]][/tex]

We have

[tex]E[Y\mid X=x]=\displaystyle\int_0^2yf_{Y\mid X}(y\mid x)\,\mathrm dy=\frac{6x+4}{6x+3}=1+\frac1{6x+3}[/tex]

[tex]\implies E[Y\mid X]=1+\dfrac1{6X+3}[/tex]

This random variable is undefined only when [tex]X=-\frac12[/tex] which is outside the support of [tex]f_X[/tex], so we have

[tex]E[Y]=E\left[1+\dfrac1{6X+3}\right]=\displaystyle\int_0^1\left(1+\frac1{6x+3}\right)f_X(x)\,\mathrm dx=\frac87[/tex]

ACCESS MORE