Let [tex]u=x^2-4[/tex] and [tex]v=4x-5[/tex]. By the product rule,
[tex]\dfrac{\mathrm d(u^5v^4)}{\mathrm dx}=\dfrac{\mathrm d(u^5)}{\mathrm dx}v^4+u^5\dfrac{\mathrm d(v^4)}{\mathrm dx}[/tex]
By the power rule, we have [tex](u^5)'=5u^4[/tex] and [tex](v^4)'=4v^3[/tex], but [tex]u,v[/tex] are functions of [tex]x[/tex], so we also need to apply the chain rule:
[tex]\dfrac{\mathrm d(u^5)}{\mathrm dx}=5u^4\dfrac{\mathrm du}{\mathrm dx}[/tex]
[tex]\dfrac{\mathrm d(v^4)}{\mathrm dx}=4v^3\dfrac{\mathrm dv}{\mathrm dx}[/tex]
and we have
[tex]\dfrac{\mathrm du}{\mathrm dx}=2x[/tex]
[tex]\dfrac{\mathrm dv}{\mathrm dx}=4[/tex]
So we end up with
[tex]\dfrac{\mathrm d(u^5v^4)}{\mathrm dx}=10xu^4v^4+16u^5v^3[/tex]
Replace [tex]u,v[/tex] to get everything in terms of [tex]x[/tex]:
[tex]\dfrac{\mathrm d((x^2-4)^5(4x-5)^4)}{\mathrm dx}=10x(x^2-4)^4(4x-5)^4+16(x^2-4)^5(4x-5)^3[/tex]
We can simplify this by factoring:
[tex]10x(x^2-4)^4(4x-5)^4+16(x^2-4)^5(4x-5)^3=2(x^2-4)^4(4x-5)^3\bigg(5x(4x-5)+8(x^2-4)\bigg)[/tex]
[tex]=2(x^2-4)^4(4x-5)^3(28x^2-57)[/tex]