Respuesta :
Answer:
[tex]T_{f}[/tex] = 38.0° C
Explanation:
The thermal transfer processes are governed by two equations one for there is a change of state, during this process the temperature does not change and another for which there is a change of temperature.
Q = ± m L
Q = m [tex]c_{e}[/tex] ΔT
In calorimetric processes the heat transferred is equal to the heat absorbed by the system
-Qc = Qabs
Let's apply these equations to our system, we will assume the quantity A and B zero, reduce the magnitudes to the SI system
m1 = 10 g = 0.010 kg
m2 = 125 g = 0.125 kg
[tex]c_{e}[/tex] (ice) = 2090 J / kg ºC
[tex]c_{ew}[/tex] (water) = 4186 J / kg ºC
Lf = 3.33 105 J / kg
Let's write the expression for the heat given
Qc = m₂ [tex]c_{ew}[/tex] (T₀ - [tex]T_{f}[/tex] )
Qc = 0.125 4186 (48.0 - [tex]T_{f}[/tex])
Qc = 523.25 (48.0 - [tex]T_{f}[/tex])
The expression for absorbed is
Qabs = Q1 + Q2 + Q3
calculate Q₁
Q₁ = m [tex]c_{e}[/tex] ([tex]T_{f}[/tex] - T₀)
Q₁ = 0.010 2090 (0 - (-15.0))
Q₁ = 313.5 J
Let's change state from ice to liquid water
Q₂ = + mL
Q₂ = 0.010 3.33 105
Q₂ = 3.33 103 J
Now let's heat the liquid water to the equilibrium temperature
Q₃ = m₁ [tex]c_{ew}[/tex] ([tex]T_{f}[/tex]-T₀)
Q₃ = 0.01 4186 ([tex]T_{f}[/tex] - 0)
Q₃ = 41.86 [tex]T_{f}[/tex]
let's calculate the maximum heat assigned
Qc = 0.125 4186 (48.0 - 0)
Qc = 2.5 104 J
Qc> (Q₂ + Q₁)
all the ice is melted
523.25 (48.0 - [tex]T_{f}[/tex]) = Q1 + Q2 + 41.86 [tex]T_{f}[/tex]
(41.86 +523.25) [tex]T_{f}[/tex]= 523.25 48 - Q1 -Q2
565.11 [tex]T_{f}[/tex] = 25116 - 313.5 - 3.33 103
[tex]T_{f}[/tex] = 21469.5 / 565.11
[tex]T_{f}[/tex] = 38.0 ° C