A (10.0+A) g ice cube at -15.0oC is placed in (125+B) g of water at 48.0oC.

Find the final temperature of the system when equilibrium is reached.

Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings.

Give your answer in oC with 3 significant figures.

Respuesta :

Answer:

  [tex]T_{f}[/tex] = 38.0° C

Explanation:

The thermal transfer processes are governed by two equations one for there is a change of state, during this process the temperature does not change and another for which there is a change of temperature.  

     Q = ± m L  

     Q = m [tex]c_{e}[/tex] ΔT  

In calorimetric processes the heat transferred is equal to the heat absorbed by the system  

     -Qc = Qabs  

Let's apply these equations to our system, we will assume the quantity A and B zero, reduce the magnitudes to the SI system  

    m1 = 10 g = 0.010 kg  

     m2 = 125 g = 0.125 kg  

    [tex]c_{e}[/tex] (ice) = 2090 J / kg ºC  

    [tex]c_{ew}[/tex] (water) = 4186 J / kg ºC  

     Lf = 3.33 105 J / kg  

Let's write the expression for the heat given  

     Qc = m₂ [tex]c_{ew}[/tex] (T₀ - [tex]T_{f}[/tex] )  

     Qc = 0.125 4186 (48.0 - [tex]T_{f}[/tex])  

     Qc = 523.25 (48.0 - [tex]T_{f}[/tex])  

The expression for absorbed  is  

     Qabs = Q1 + Q2 + Q3  

calculate Q₁

     Q₁ = m [tex]c_{e}[/tex] ([tex]T_{f}[/tex] - T₀)  

     Q₁ = 0.010 2090 (0 - (-15.0))  

     Q₁ = 313.5 J  

Let's change state from ice to liquid water  

     Q₂ = + mL  

     Q₂ = 0.010 3.33 105  

     Q₂ = 3.33 103 J  

Now let's heat the liquid water to the equilibrium temperature

     Q₃ = m₁ [tex]c_{ew}[/tex] ([tex]T_{f}[/tex]-T₀)  

     Q₃ = 0.01 4186 ([tex]T_{f}[/tex] - 0)  

     Q₃ = 41.86 [tex]T_{f}[/tex]

let's calculate the maximum heat assigned

      Qc = 0.125 4186 (48.0 - 0)  

     Qc = 2.5 104 J  

     Qc> (Q₂ + Q₁)  

all the ice is melted

523.25 (48.0 - [tex]T_{f}[/tex]) = Q1 + Q2 + 41.86 [tex]T_{f}[/tex]

     (41.86 +523.25) [tex]T_{f}[/tex]= 523.25 48 - Q1 -Q2  

     565.11 [tex]T_{f}[/tex] = 25116 - 313.5 - 3.33 103  

     [tex]T_{f}[/tex] = 21469.5 / 565.11  

[tex]T_{f}[/tex] = 38.0 ° C

ACCESS MORE
EDU ACCESS
Universidad de Mexico