Answer:
The heat capacity of the bomb calorimeter is 7.58 J/°C.
Explanation:
[tex]C_6H_6(I) + \frac{15}{2} O_2 (g) \rightarrow 6CO_2 (g) + 3H_2O (g) ,\Delta H^o = -3267.5 kJ[/tex]
First, we will calculate energy released on combustion:
[tex]\Delta H[/tex] = enthalpy change = -3267.5 kJ/mol
q = heat energy released
n = number of moles benzene= [tex]\frac{\text{Mass of benzene}}{\text{Molar mass of benzene}}=\frac{2.15 g g}{78 g /mol}=0.02756 mol[/tex]
[tex]\Delta H=-\frac{q}{n}[/tex]
[tex]q=\Delta H\times n =-3267.5 kJ/mol\times 0.02756 mol=-90.0657 kJ[/tex]
q = -90.0657 kJ = -90,065.7 J
Now we calculate the heat gained by the calorimeter let it be Q.
Q = -q= -(-90,065.7 J) = 90,065.7 J (conservation of energy)
[tex]Q=c\times (T_{final}-T_{initial})[/tex]
where,
Q = heat gained by calorimeter
c = specific heat capacity of calorimeter =?
[tex]T_{final}[/tex] = final temperature = [tex]34.34^oC[/tex]
[tex]T_{initial}[/tex] = initial temperature = [tex]22.46^oC[/tex]
Now put all the given values in the above formula, we get:
[tex]90,065.7 J=c\times (34.34-22.46)^oC[/tex]
[tex]c=\frac{90,065.7 J}{(34.34-22.46)^oC}=7.58 J/^oC[/tex]
The heat capacity of the bomb calorimeter is 7.58 J/°C.