Answer:
[tex]E_{loss}=5660\frac{ft\cdot lb}{slug}[/tex]
Explanation:
The loss in avaliable energy associated with the incompressible, steady flow is given by:
[tex]E_{loss}=\frac{P_1-P_2}{\rho}+\frac{V_1^2-V_2^2}{2}[/tex]
According to the law of conservation of mass:
[tex]V=\frac{\dot{m}}{\rho A}\\V=\frac{\dot{m}}{\rho \pi r^2}\\V=\frac{\dot{m}}{\rho\frac{\pi d^2}{4}}[/tex]
[tex]\dot{m}[/tex] is the rate at which the water flows. Replacing the volumes in the enegy loss formula:
[tex]E_{loss}=\frac{P_1-P_2}{\rho}+\frac{(\frac{\dot{m}}{\rho\frac{\pi d_1^2}{4}})^2-(\frac{\dot{m}}{\rho \frac{\pi d_2^2}{4}})^2}{2}\\E_{loss}=\frac{P_1-P_2}{\rho}+\frac{1}{2}(\frac{4\dot{m}}{\rho \pi})^2(\frac{1}{d_1^4}-\frac{1}{d_2^4}})\\E_loss=\frac{P_1-P_2}{\rho}+\frac{1}{2}(\frac{4\dot{m}}{\rho \pi})^2(\frac{1}{d_1^4}-\frac{1}{d_2^4}})[/tex]
Replacing the given values, we obtain this result:
[tex]E_{loss}=5660\frac{ft\cdot lb}{slug}[/tex]