Answer:
[tex]\lambda_A=2.65177\times 10^{-7}\ m[/tex]
[tex]\lambda_B=3.32344\times 10^{-7}\ m[/tex]
Explanation:
h = Planck's constant = [tex]6.63\times 10^{-34}\ m^2kg/s[/tex]
c = Speed of light = [tex]3\times 10^8\ m/s[/tex]
m = Mass of electron = [tex]9.11\times 10^{-31}\ kg[/tex]
[tex]W_0[/tex] = Work function = [tex]4.8\times 10^{-19}\ J[/tex]
[tex]v_A[/tex] = Velocity of A particle = [tex]7.7\times 10^5\ m/s[/tex]
[tex]v_B[/tex] = Velocity of B particle = [tex]5.1\times 10^5\ m/s[/tex]
The wavelength is given by
[tex]\lambda=\frac{hc}{\frac{1}{2}mv^2+W_0}[/tex]
[tex]\lambda_A=\frac{6.63\times 10^{-34}\times 3\times 10^8}{\frac{1}{2}9.11\times 10^{-31}(7.7\times 10^5)^2+4.8\times 10^{-19}}\\\Rightarrow \lambda_A=2.65177\times 10^{-7}\ m[/tex]
The wavelength [tex]\lambda_A=2.65177\times 10^{-7}\ m[/tex]
[tex]\lambda_B=\frac{6.63\times 10^{-34}\times 3\times 10^8}{\frac{1}{2}9.11\times 10^{-31}(5.1\times 10^5)^2+4.8\times 10^{-19}}\\\Rightarrow \lambda_B=3.32344\times 10^{-7}\ m[/tex]
The wavelength [tex]\lambda_B=3.32344\times 10^{-7}\ m[/tex]