Respuesta :
Answer:
Xcm = 1.95 cm and Ycm = 1.76 cm
Explanation:
The very useful concept of mass center is
R cm = 1/M ∑ [tex]m_{i}[/tex] [tex]r_{i}[/tex]
Where ri, mi are the mass positions of the bodies from some reference point by selecting and M is the total mass of the body.
Let's look for the total mass
M = m₁ + m₂ + m₃
M = 140 + 45 + 85
M = 270 g
Let's look for the position of each point
Point 1. top vertex, if the triangle has as side d
R₁ = d / 2 i ^ + d j ^
R₁ = (1.7 cm i ^ + 3.4 j ^) cm
Point 2. left vertex. What is the origin of the system?
R₂ = 0
Point 3. Right vertex
R₃ = d i ^
R₃ = 3.4 i ^ cm
a) The x component of the massage center
Xcm = 1 / M (m₁ x₁ + m₂ x₂ + m₃ x₃)
Xcm = 1 / M (m₁ d / 2 + 0 + m₃ d)
Xcm = d / M (m₁ / 2 + m₃)
b) Let's write the mass center component x
Xcm = 1/270 (1.7 140 + 0 + 3.4 85)
Xcm = 238/270
Xcm = 1.95 cm
c) let's find the component and center of mass
Ycm = 1 / M (m₁ y₁ + m₂ y₂ + m₃ y₃)
Ycm = 1 / M (m₁ d + 0 + 0)
Ycm = m₁ / M d
d) let's calculate
Y cm = 1/270 (140 3.4 + 0 + 0)
Ycm = 1.76 cm
The center of mass is the point where the sum of the relative weighted
position of distributed masses m₁, m₂, and m₃ is zero.
The responses are as follows;
- (a) The symbolic equation for [tex]x_{cm}[/tex] is [tex]x_{cm} = \dfrac{ d \times \left(\dfrac{m_1}{2} + m_3 \right)}{m_1 + m_2 + m_3}[/tex]
- (b) [tex]x_{cm} = \underline{1.95\overline{185}}[/tex]
- (c) The symbolic equation for [tex]y_{cm}[/tex] is [tex]y_{cm} = \dfrac{m_1 \cdot d \cdot \dfrac{\sqrt{3} }{2}}{m_1 + m_2 + m_3}[/tex]
- (d) [tex]y_{cm}[/tex] ≈ 1.53
Reasons:
The given masses and their location are;
Location of the masses = Thee vertices of the equilateral triangle
Side length of the equilateral triangle, d = 3.4 cm
m₁ = 140 g, location = Top vertex of the equilateral triangle
m₂ = 45 g, location = Left vertex of equilateral triangle
m₃ = 85 g, location = Right vertex of the equilateral triangle
Assumption;
The location of the left vertex of equilateral triangle = The origin (0, 0)
Therefore;
The location of the right vertex of equilateral triangle = (3.4, 0)
Location of the top vertex of the equilateral triangle = (3.4×cos(60°), 3.4×sin(60°))
Which gives;
Location of the top vertex of the equilateral triangle = (1.7, 1.7×√3)
(a) The symbolic equation for the horizontal component of the center of
mass relative to the left vertex is given as follows;
[tex]x_{cm} = \dfrac{m_1 \cdot x_1 + m_2 \cdot x_2 + m_3 \cdot x_3}{m_1 + m_2 + m_3}[/tex]
Where;
x₁ = x-coordinate of the top vertex = [tex]\dfrac{d}{2}[/tex]
x₂ = x-coordinate of the left vertex = 0
x₃ = x-coordinate of the right vertex = d
Therefore, we have;
[tex]x_{cm} = \dfrac{m_1 \cdot \dfrac{d}{2} + m_2 \times 0 + m_3 \cdot d}{m_1 + m_2 + m_3} = \dfrac{ d \times \left(\dfrac{m_1}{2} + m_3 \right)}{m_1 + m_2 + m_3}[/tex]
The symbolic equation for the horizontal component of the center of mass relative to the left vertex, in centimeters is [tex]x_{cm} = \underline{ \dfrac{ d \times \left(\dfrac{m_1}{2} + m_3 \right)}{m_1 + m_2 + m_3}}[/tex]
(b) The horizontal component of the center of mass relative to the left
vertex is therefore;
[tex]x_{cm} = \dfrac{ 3.4 \times \left(\dfrac{140}{2} + 85 \right)}{140 + 45 + 85} = \dfrac{527}{270} = 1.95\overline{185}[/tex]
[tex]x_{cm} = \underline{1.95\overline{185}}[/tex]
(c) The symbolic equation for the vertical component of the center of mass
relative to the left vertex is given as follows;
[tex]y_{cm} = \dfrac{m_1 \cdot y_1 + m_2 \cdot y_2 + m_3 \cdot y_3}{m_1 + m_2 + m_3}[/tex]
Where;
y₁ = d × sin(60°) = [tex]d \cdot \dfrac{\sqrt{3} }{2}[/tex]
y₂ = 0
y₃ = 0
Therefore;
[tex]y_{cm} = \dfrac{m_1 \cdot d \cdot \dfrac{\sqrt{3} }{2}+ m_2 \times 0 + m_3 \times 0}{m_1 + m_2 + m_3} = \dfrac{m_1 \cdot d \cdot \dfrac{\sqrt{3} }{2}}{m_1 + m_2 + m_3}[/tex]
The symbolic equation for the vertical component of the center of mass
relative to the left vertex is therefore;
[tex]y_{cm} = \underline{\dfrac{m_1 \cdot d \cdot \dfrac{\sqrt{3} }{2}}{m_1 + m_2 + m_3}}[/tex]
(d) The vertical component of the center of mass relative to the left vertex
is found by plugging in the values of the variables as follows;
[tex]y_{cm} = \dfrac{140 \times 3.4 \times \dfrac{\sqrt{3} }{2}}{140 + 45 + 85} = \dfrac{119}{135} \cdot \sqrt{3}[/tex]
[tex]y_{cm} = \underline{\dfrac{119}{135} \cdot \sqrt{3} \approx 1.53}[/tex]
[tex]y_{cm}[/tex] ≈ 1.53
Learn more here:
https://brainly.com/question/8662931
