A counterflow double-pipe heat exchanger is used to heat water from 20°C to 80°C at a rate of 1.2 kg/s. The heating is to be completed by geothermal water available at 160°C at a mass flow rate of 2 kg/s. The inner tube is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m2K, determine the length of the heat exchanger required to achieve the required heating.

Respuesta :

Answer:L=109.16 m

Explanation:

Given

initial temperature [tex]=20^{\circ}C[/tex]

Final Temperature [tex]=80^{\circ}C[/tex]

mass flow rate of cold fluid [tex]\dot{m_c}=1.2 kg/s[/tex]

Initial Geothermal water temperature [tex]T_h_i=160^{\circ}C[/tex]

Let final Temperature be T

mass flow rate of geothermal water [tex]\dot{m_h}=2 kg/s[/tex]

diameter of inner wall [tex]d_i=1.5 cm[/tex]

[tex]U_{overall}=640 W/m^2K[/tex]

specific heat of water [tex]c=4.18 kJ/kg-K[/tex]

balancing energy

Heat lost by hot fluid=heat gained by cold Fluid

[tex]\dot{m_c}c(T_h_i-T_h_e)= \dot{m_h}c(80-20)[/tex]

[tex]2\times (160-T)=1.2\times (80-20)[/tex]

[tex]160-T=36[/tex]

[tex]T=124^{\circ}C[/tex]

As heat exchanger is counter flow therefore

[tex]\Delta T_1=160-80=80^{\circ}C[/tex]

[tex]\Delta T_2=124-20=104^{\circ}C[/tex]

[tex]LMTD=\frac{\Delta T_1-\Delta T_2}{\ln (\frac{\Delta T_1}{\Delta T_2})}[/tex]

[tex]LMTD=\frac{80-104}{\ln \frac{80}{104}}[/tex]

[tex]LMTD=91.49^{\circ}C[/tex]

heat lost or gain by Fluid is equal to heat transfer in the heat exchanger

[tex]\dot{m_c}c(80-20)=U\cdot A\cdot[/tex] (LMTD)

[tex]A=\frac{1.2\times 4.184\times 1000\times 60}{640\times 91.49}=5.144 m^2[/tex]

[tex]A=\pi DL=5.144[/tex]

[tex]L=\frac{5.144}{\pi \times 0.015}[/tex]

[tex]L=109.16 m[/tex]

Ver imagen nuuk
ACCESS MORE