Answer:
The standard cell potential at 25 ∘C for the reaction is 2.72 Volts.
Explanation:
Δ°G = Δ°H - TΔ°S (Gibb's equation)
Δ°G = Gibbs free energy
Δ°H = Enthalpy of the reaction at temperature T
Δ°S = Entropy of the reaction at temperature T
[tex]\Delta G^o=-nfE^o_{cell}[/tex]
n = number of electrons transferred
F = Faraday's constant = 96500 C
[tex]E^o_{cell}[/tex] = standard electrode potential of the cell
We have:
Δ°H = -829 kJ = -829000 J
Δ°S = -367 J/K
T = 25 C = 298.15 K
[tex]\Delta G^{o}=-829000 J - (298.15 K\times -367 J/K) = -719,578.95 J[/tex]
[tex]X(s)\rightarrow X^{2+}(aq)+2e^-[/tex]
[tex]2Y^++2e^-(aq)\rightarrow 2Y(s)[/tex]
n = 2
[tex]-719,578.95 J=-2\times 96500 C\times E^o_{cell}[/tex]
[tex]E^o_{cell}=\frac{-719,578.95 J}{-2\times 96500 C}=3.73 V[/tex]
The standard cell potential at 25 ∘C for the reaction is 2.72 Volts.