Answer:
[tex]X_c=-33.86275385\Omega[/tex]
[tex]|Z|=105.5778675\Omega[/tex]
[tex]I=0.04735841062A[/tex]
[tex]\phi=20.78612878\°[/tex]
Explanation:
The electrical reactance is defined as:
[tex]X_c=-\frac{1}{2\pi fC}[/tex]
Where:
[tex]f=Frequency\\C=Capacitance[/tex]
So, replacing the data provided by the problem:
[tex]X_c=\frac{1}{2\pi *100*(47*10^{-6} )} =-33.86275385\Omega[/tex]
Now, the impedance can be calculated as:
[tex]Z=R+jX_c[/tex]
Where:
[tex]R=Resistance\\X_c= Capacitive\hspace{3}reactance[/tex]
Replacing the data:
[tex]Z=100-j33.86275385[/tex]
In order to find the magnitude of the impedance we can use the next equation:
[tex]|Z|=\sqrt{(R^2)+(X_c^2)}=\sqrt{(100)^2+(-33.86275385)^2} =105.5778675\Omega[/tex]
We can use Ohm's law to find the current:
[tex]V=I*Z\\I=\frac{V}{Z}[/tex]
Therefore the current is:
[tex]I=\frac{5}{100-j33.86275385}=0.04485638113+0.01518960593j[/tex]
And its magnitude is:
[tex]|I|=\sqrt{(0.04485638113)^2+(0.01518960593)^2} =0.04735841062\Omega[/tex]
Finally the phase angle of the current is given by:
[tex]\phi=arctan(\frac{0.01518960593}{0.04485638113})=20.78612878\°[/tex]