Answer:
[tex]\frac{dB}{dt} = 3.03 \times 10^6 T/s[/tex]
Explanation:
As we know that the power emitted by the source is given as
[tex]P = 170 W[/tex]
now we know that
[tex]P = \frac{N}{t} (\frac{hc}{\lambda})[/tex]
now we know that energy density is given as
[tex]u = \frac{B^2}{2\mu_0} + \frac{\epsilon_0 E^2}{2}[/tex]
now we have
[tex]E = B c[/tex]
[tex]u = \frac{B^2}{2\mu_0}[/tex]
intensity is defined as
[tex]I = \frac{P}{A}[/tex]
now we have
[tex]\frac{I}{c} = u = \frac{B^2}{2\mu_0}[/tex][/tex]
now we have
[tex]\frac{dB}{dt} = \omega B[/tex]
[tex]\frac{dB}{dt} = \frac{2\pi c B}{\lambda}[/tex]
[tex]\frac{dB}{dt} = \frac{2\pi c \sqrt{2\mu_0 I}}{\lambda\sqrt c}[/tex]
here we have
[tex]I = \frac{P}{4\pi r^2}[/tex]
[tex]I = \frac{170}{4\pi (410)^2}[/tex]
[tex]I = 8.05 \times 10^{-5}[/tex]
now we have
[tex]\frac{dB}{dt} = \frac{2\pi\sqrt{2\mu_0 c (8.05 \times 10^{-5})}}{(510 nm)}[/tex]
[tex]\frac{dB}{dt} = 3.03 \times 10^6 T/s[/tex]