Answer:
Since,
[tex]\frac{d}{dx}x^n = nx^{n-1}[/tex]
[tex]\frac{d}{dx}(f(x).g(x)) = f(x).\frac{d}{dx}(g(x)) + g(x).\frac{d}{dx}(f(x))[/tex]
[tex]\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{g(x).f'(x) - f(x) g'(x)}{(g(x))^2}[/tex]
1) [tex]y = 8x e^x[/tex]
Differentiating with respect to x,
[tex]\frac{dy}{dx}=8( x \times e^x + e^x) = 8(xe^x + e^x) = 8e^x(x+1)[/tex]
2) [tex]y = 5x e^{x^4}[/tex]
Differentiating w. r. t x,
[tex]\frac{dy}{dx}=5(x\times 4x^3 e^{x^4}+e^{x^4})=5e^{x^4}(4x^4+1)[/tex]
3) [tex]y = x^8 + \frac{5}{x^4}[/tex]
Differentiating w. r. t. x,
[tex]\frac{dy}{dx}=8x^7 - \frac{5}{x^5}\times 4 = 8x^7 - \frac{20}{x^5}=\frac{8x^{12}-20}{x^5}[/tex]
4) [tex]f(t) = te^{11}-6t^5[/tex]
Differentiating w. r. t. t,
[tex]f'(t) = e^{11} - 30t^4[/tex]
5) [tex]g(p) = p\ln(2p+3)[/tex]
Differentiating w. r. t. p,
[tex]g'(p) = p\frac{1}{2p+3}(2) + \ln(2p+3) = \frac{2p}{2p+3}+\ln(2p+3)[/tex]
6) [tex]z = (te^{6t}+e^{5t})^7[/tex]
Differentiating w. r. t. t,
[tex]\frac{dz}{dt}=7(te^{6t}+e^{5t})^6 ( 6te^{6t}+e^{6t} + 5e^{5t})[/tex]
7) [tex]w =\frac{2y + y^2}{7+y}[/tex]
Differentiating w. r. t. y,
[tex]\frac{dw}{dy} = \frac{(7+y)(2+2y)-(2y+y^2)}{(7+y)^2} = \frac{14 + 2y + 14y +2y^2 - 2y - y^2}{(7+y)^2}=\frac{14+14y+y^2}{(7+y)^2}[/tex]