Answer:
P(Type ll error) = 0.2327
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = 15 minutes
Sample size, n = 10
Alpha, α = 0.05
Population standard deviation, σ = 4 minutes
First, we design the null and the alternate hypothesis
[tex]H_{0}: \mu = 18\\H_A: \mu > 18[/tex]
We use One-tailed z test to perform this hypothesis.
Formula:
[tex]z_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]
[tex]z_{critical} \text{ at 0.05 level of significance } = 1.645[/tex]
Putting the values, we get,
[tex]z_{stat} = \displaystyle\frac{\bar{x}- 15}{\frac{4}{\sqrt{10}} } > 1.645\\\\\bar{x} -1 5 > 1.645\times \frac{4}{\sqrt{10}}\\\\\bar{x} -15 > 2.08\\\bar{x} = 17.08[/tex]
Type ll error is the error of accepting the null hypothesis when it is not true.
P(Type ll error)
[tex]P(\bar{x}<17.07 \text{ when mean is 18})\\\\= P(z < \frac{\bar{x}-18}{\frac{4}{\sqrt{10}}})\\\\= P(z < \frac{17.08-18}{\frac{4}{\sqrt{10}}})\\\\= P(z<-0.7273)[/tex]
Calculating value from the z-table we have,
[tex]P(z<-0.7273) = 0.2327[/tex]
Thus,
P(Type ll error) = 0.2327