Answer:
[tex]v=346.05\ m.s^{-1}[/tex]
Explanation:
Given:
initial temperature of the lead bullet, [tex]T_i=43^{\circ}C[/tex]
latent heat of fusion of lead, [tex]L_f=2.32\times 10^4\ J.kg^{-1}[/tex]
melting point of lead, [tex]T_m=327.3^{\circ}C[/tex]
We have:
specific heat capacity of lead, [tex]c=129\ J.kg^{-1}.K^{-1}[/tex]
According to question the whole kinetic energy gets converted into heat which establishes the relation:
[tex]\rm KE=(heat\ of\ rising\ the\ temperature\ from\ 43\ to\ 327.3\ degree\ C)+(heat\ of\ melting)[/tex]
[tex]\frac{1}{2} m.v^2=m.c.\Delta T+m.L_f[/tex]
[tex]\frac{1}{2} m.v^2=m(c.\Delta T+L_f)[/tex]
[tex]\frac{v^2}{2} =129\times(327.3-43)+23200[/tex]
[tex]v=346.05\ m.s^{-1}[/tex]