Answer:
Volume is [tex]2000\pi\ m^{3}[/tex]
Solution:
As per the question:
Diameter, d = 40 m
Radius, r = 20 m
Now,
From north to south, we consider this vertical distance as 'y' and height, h varies linearly as a function of y:
iff
h(y) = cy + d
Then
when y = 1 m
h(- 20) = 1 m
1 = c.(- 20) + d = - 20c + d (1)
when y = 9 m
h(20) = 9 m
9 = c.20 + d = 20c + d (2)
Adding eqn (1) and (2)
d = 5 m
Using d = 5 in eqn (2), we get:
[tex]c = \frac{1}{5}[/tex]
Therefore,
[tex]h(y) = \frac{1}{5}y + 5[/tex]
Now, the Volume of the pool is given by:
[tex]V = \int h(y)dA[/tex]
where
A = [tex]r\theta[/tex]
[tex]A = rdr\ d\theta[/tex]
Thus
[tex]V = \int (\frac{1}{5}y + 5)dA[/tex]
[tex]V = \int_{0}^{2\pi}\int_{0}^{20} (\frac{1}{5}rsin\theta + 5) rdr\ d\theta[/tex]
[tex]V = \int_{0}^{2\pi}\int_{0}^{20} (\frac{1}{5}r^{2}sin\theta + 5r}) dr\ d\theta[/tex]
[tex]V = \int_{0}^{2\pi} (\frac{1}{15}20^{3}sin\theta + 1000) d\theta[/tex]
[tex]V = [- 533.33cos\theta + 1000\theta]_{0}^{2\pi}[/tex]
[tex]V = 0 + 2\pi \times 1000 = 2000\pi\ m^{3}[/tex]