Answer:
4058.48594 m/s
Explanation:
M = Mass of Mars = [tex]6\times 10^{23}\ kg[/tex]
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
[tex]v_i[/tex] = Initial velocity = 2910 m/s
[tex]v_f[/tex] = Final velocity
m = Mass of satellite
[tex]d_i[/tex] = Initial distance of satellite = [tex]6.92\times 10^6\ m[/tex]
[tex]d_f[/tex] = Final distance of satellite = [tex]4.09\times 10^6\ m[/tex]
The kinetic and potential energy of the system is conserved
[tex]P_i+K_i=P_f+K_f\\\Rightarrow -\frac{GMm}{d_i}+\frac{1}{2}mv_i^2=-\frac{GMm}{d_f}+\frac{1}{2}mv_f^2\\\Rightarrow -\frac{GM}{d_i}+\frac{1}{2}v_i^2=-\frac{GM}{d_f}+\frac{1}{2}v_f^2\\\Rightarrow v_f=\sqrt{2\left(-\frac{GM}{d_i}+\frac{1}{2}v_i^2+\frac{GM}{d_f}\right)}\\\Rightarrow v_f=\sqrt{2\left(-\frac{6.67\times 10^{-11}\times 6\times 10^{23}}{6.92\times 10^6}+\frac{1}{2}2910^2+\frac{6.67\times 10^{-11}\times6\times 10^{23}}{4.09\times 10^6}\right)}\\\Rightarrow v_f=4058.48594\ m/s[/tex]
Final velocity is 4058.48594 m/s